
 

 

Journal of Artificial Intelligence and Cyber Security (JAICS) 

An International Open Access, Peer-Reviewed, Refereed Journal 

 

1 
 

NEUROMORPHIC COMPUTING 
1Prof P.T.Talole, 2Mr.Nilesh.M.Jadhav,3Mr. 

Ajay.S.Ingle,4Mr.Samyak.G.Sonone,  5Miss.Divyani.V.Patil 
1 Asst.Prof, Department of Information Technology Engineering, 

Anuradha Engineering College, Chikhli 
2 Student, Department of Information Technology Engineering, 

Anuradha Engineering College, Chikhli 
3 Student, Department of Information Technology Engineering, 

Anuradha Engineering College, Chikhli 
4 Student, Department of Information Technology Engineering, 

Anuradha Engineering College, Chikhli 
5 Student, Department of Information Technology Engineering, 

Anuradha Engineering College, Chikhli 
1prmod.talole@aecc.ac.in,2ingleajay03@gmail.com,3nileshjadhav2213@gmail.com , 

4samyaksonone9356@gmail.com,5patildivyani1230@gmail.com 
Abstract: Neuromorphic computing represents a revolutionary approach to artificial intelligence inspired by the architecture  and 

functionality of the human brain. Unlike traditional computing paradigms that rely on binary logic and  centralized processing units, 

neuromorphic systems leverage massively parallel networks of artificial neurons and  synapses to mimic the brain's cognitive processes in 

real time. This seminar explores the foundational principles,  current advancements, and future prospects of neuromorphic computing. Topics 

covered include the biological  basis of neural computation, the design and implementation of neuromorphic hardware, applications in machine  

learning and robotics, as well as challenges such as scalability and energy efficiency. By bridging the gap between  neuroscience and computer 

science, neuromorphic computing holds promise for achieving unprecedented levels of  computational efficiency and cognitive capabilities, 

paving the way towards the next generation of intelligent  systems. We survey the current status of Neuromorphic computing applications in 

real-world and discuss its future.   
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I. Introduction 
Nowadays, neuromorphic computing has become a popular architecture of choice instead of von Neumann  computing 

architecture for applications such as cognitive processing. Based on highly connected synthetic neurons  and synapses to build 
biologically inspired methods, which to achieve theoretical neuroscientific models and  challenging machine learning techniques 
using. The von Neumann architecture is the computing standard  predominantly for machines. However, it has significant 
differences in organizational structure, power  requirements, and processing capabilities relative to the working model of the 
human brain. Therefore,  neuromorphic calculations have emerged in recent years as an auxiliary architecture for the von 
Neumann system.  Neuromorphic calculations are applied to create a programming framework. The system can learn and create  
applications from these computations to simulate neuromorphic functions. These can be defined as neuro- inspired  

models, algorithms and learning methods, hardware and equipment, support systems and applications.  Neuromorphic 
architectures have several significant and special requirements, such as higher connection and  parallelism, low power 
consumption, memory collocation and processing. Its strong ability to execute complex  computational speeds compared to 
traditional von Neumann architectures, saving power and smaller size of the  footprint. These features are the bottleneck of the 
von Neumann architecture, so the neuromorphic architecture will  be considered as an appropriate choice for implementing 
machine learning algorithms.  

A. What is neuromorphic computing?   
Neuromorphic computing combines computing fields such as machine learning and artificial intelligence with  cutting- 

edge hardware development and materials science, as well as ideas from neuroscience. In its original  incarnation, 
“neuromorphic” was used to refer to custom devices/chips that included analog components and  mimicked biological neural 
activity [Mead1990]. Today, neuromorphic computing has broadened to include a wide  variety of software and hardware 
components, as well as materials science, neuroscience, and computational  neuroscience research.  

B. Why now?  
In 1978, Backus described the von Neumann bottleneck [Backus1978]: In the von Neumann architecture, memory  and 

computation are separated by a bus, and both the data for the program at hand as well as the program itself has  to be transferred 
from memory to a central processing unit (CPU). As CPUs have grown faster, memory access and  transfer speeds have not 
improved at the same scale [Hennessy2011]. Moreover, even CPU performance increases  are slowing, as Moore’s law, which 
states that the number of transistors on a chip doubles roughly every 2 years, is  beginning to slow (if not plateau). Though there 
is some argument as to whether Moore’s law has actually come to  an end, there is a consensus that Dennard scaling, which 
says that as transistors get smaller that power density stays  constant, ended around 2004 [Shalf2015]. As a consequence, energy 
consumption on chips has increased as we  continue to add transistors. While we are simultaneously experiencing issues 
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associated with the von Neumann  bottleneck, the computation-memory gap, the plateau of Moore’s law, and the end of Dennard 
scaling, we are  gathering data in greater quantities than ever before. Data comes in a variety of forms and is gathered in vast  
quantities through a plethora of mechanisms, including sensors in real environments, by companies, organizations,  and 
governments and from scientific instruments or simulations. Much of this data sits idle in storage, is summarized  for a researcher 
using statistical techniques, or is thrown away completely because current computing resources and  associated algorithms 
cannot handle the scale of data that is being gathered. Moreover, beyond intelligent data  analysis needs, as computing has 
developed, the types of problems we as users want computers to solve have  expanded. In particular, we are expecting more and 
more intelligent behavior from our systems. These issues and  others have spurred the development of non–von Neumann 
architectures. In particular, the goal of pursuing new  architectures is not to find a replacement for the traditional von Neumann 
paradigm but to find architectures and  devices that can complement the existing paradigm and help to address some of its 
weaknesses. Neuromorphic  architectures are one of the proposed complement architectures for several reasons: 1. Co-located 
memory and  computation, as well as simple communication between components, can provide a reduction in communication  
costs. 2. Neuromorphic architectures often result in lower power consumption (which can be a result of analog or  mixed analog-
digital devices or due to the event-driven nature of the systems). 3. Common data analysis techniques,  such as neural networks, 
have natural implementations on neuromorphic devices and thus are applicable to many  “big data” problems. Neuromorphic 
Computing Architectures, Models, and Applications 4. By building the  architecture using brain-inspired components, there is 
potential that a type of intelligent behavior will emerge.  Overall, neuromorphic computing offers the potential for enormous 
increases in computational efficiency as  compared to existing architecture in domains like big data analysis, sensory fusion and 
processing, real-world/real time controls (e.g., robots), cyber security, etc. Without neuromorphic computing as part of the 
future landscape of  computing, these applications will be very poorly served. 

II. Basic computational building blocks and general architectures of neuromorphic  

systems  

The basic computational building blocks of most neuromorphic systems are neurons and synapses. Some  
neuromorphic systems go further and include notions of axons, dendrites, and other neural structures, but in general, neurons 
and synapses are the key components of the majority of neuromorphic systems. The information  propagation usually is 
conducted through spikes: whenever enough charge has flowed in at synapses, a neuron generates outgoing spikes, which causes 
charge to be injected into the post-synaptic neuron.  

What other biological components may be necessary for a working neuromorphic system?    

Neuron  

 
Beyond neurons and synapses, there are a variety of other biologically inspired mechanisms 

that may be worth  considering as computational primitives. Astrocytes are glial cells in biological 
brains that act as regulatory  systems; in particular, they can stimulate, calm, synchronize, and repair 
neurons. Certainly we will want to  consider what computational effects these regulatory-type systems 
will have on neuromorphic models.  Neurotransmitters and neuromodulator systems also have a 
significant effect on the behavior of biological brains.  

It is not clear how these systems influence the capabilities of biological brains, such as learning, adaptation, and  fault 
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tolerance, but it is worthwhile to consider their inclusion in neuromorphic models. In general, the goalshould be to make 
minimalistic systems first and then to grow their complexity as we understand how the systems operate  together.  

How should neurons and synapses be organized for effective information propagation and  communication?  
Connectivity and plasticity in synaptic weighting dominate the complexity of neuromorphic computing. Offering  

the compatible connection density as human brain usually results in unaffordable complexity and unsalable system  design. 
Therefore, how to organize neurons and synapses to obtain the greatest density of interconnect at the local  level while offering 
scalable long-range connectivity and balancing the traffic in routing of neural events remains  an open research question.  

III. How do we train/program a neuromorphic computer  

 
A key question for neuromorphic computers is how to use the device for real applications. In answering this question, 

we must define what it means to “program” a neuromorphic device, or perhaps more appropriately, how neuromorphic 
devices will learn or be trained. As such, we define three terms to describe the operation of  neuromorphic computers on real 
applications.  

Programmed: The user explicitly setting all parameters and potentially the structure of the networks to perform a 
particular  task.  

Trained: A training algorithm is defined. Example situations from the application are presented as part of the 
algorithm.  The user provides feedback (as part of the algorithm) as to how well the neuromorphic device is performing the 
task, and  the algorithm updates parameters and potentially structure based on that feedback. In machine learning this is often 
referred  to as “supervised learning.” An example of a training algorithm for certain types of neuromorphic implementations 
and  models is back- propagation. We also categorize reinforcement learning as a training method because the algorithm is 
receiving feedback. In this case, feedback is either “good” or “bad” as opposed to the correct answer when a wrong answer  
is given. the algorithm defines ways in which the structure and parameters are updated based on the input it  receives. In this 
case, the user does not provide feedback, but the environment may provide some sort of inherent  “reward” or “punishment” 
(in the case of reinforcement learning). In machine learning, this is often referred to  as “unsupervised learning.” Unsupervised 
learning algorithms typically create a compressed "representation" of  the input structure. An example of a learning algorithm 
for certain types of neuromorphic implementations and models is spike- timing- dependent plasticity.  

For neuromorphic computing in the real world, there are roles for all three use-cases, and it is likely that some  
combination of the three will be used. The role of a software developer for neuromorphic computers is going to  be radically 
different depending on the selected programming paradigm. The developer for an explicitly  programmed neuromorphic 
computer will need to explicitly set all parameters and structure and understand the implications of each selection and how 
they interact. Developers for trained neuromorphic computers will need  to consider what examples should be presented and 
what feedback to provide as part of the training process. They  will also likely define parameters for the algorithm itself. For 
learning neuromorphic computers, the “developer”  may be defined as the person who is presenting examples, or there may 
be no developer at all. For trained and  learning neuromorphic computers, the term developer may also be used for the person 
who defines the training or learning algorithm. Another role of a programmer for a neuromorphic computer will be to 
determine what  inputs are given, how those inputs are represented, and how they are presented to the device  

 

IV. What supporting software systems are necessary for neuromorphic systems to be usable and 

accessible 
In order for neuromorphic systems to be a valid complementary architecture for the future computing landscape,  it 

is vital that we consider the accessibility and usability of the systems during the early stages of development.  One of the 
major questions associated with usability and accessibility is how neuromorphic systems will actually be integrated into 
environments and what supporting software is necessary. We describe two example use-cases  of neuromorphic computers or 
processors and the supporting software that will be required for each use-case  
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In one use-case, a neuromorphic system may be directly connected to sensors and/or control mechanisms as an  

embedded system on autonomous vehicles, sensors, or robots that are deployed in real environments. In this case, it will be 
necessary to build custom protocols and schemes for communication among custom devices within the  deployed system 
itself, as well as the functionality to communicate results and/or data with a centralized server  (Figure 10). For this case, it is 
almost certain that most training/learning will be done off-line (and perhaps also  off-chip) and loaded onto the neuromorphic 
device, so training/learning software will be required. The  neuromorphic processor will probably be customized for the 
particular application with very little  programmability, adaptability, and on- line learning, in order to reduce the complexity 
and, as a consequence, the  size and the energy consumption of the device.  

 
Figure : Embedded system example  
A second use-case for neuromorphic computers is as a co-processor in a future heterogeneous node. Figure 11  shows 

an example of a heterogeneous node, which includes traditional CPUs, GPUs, a neuromorphic processor,  a quantum 
processor, and potentially other emerging architectures. For this use- case, the supporting software will  be extensive, and the 
device itself will likely be more programmable than neuromorphic devices for other use  

cases in order to enable the device to be as useful as possible in the heterogeneous node. Communication protocols 
will be required  

 

V. What does a “program” for a neuromorphic computer look like 

Instances of abstract network representations can be thought of as high-level “programs” for neuromorphic devices, 
which will then need to be “compiled” for each individual device. For some devices, the abstract representation will likely 
have a direct conversion process, resulting in a simple compiler. However, depending  on the implementation and its 
associated restrictions in parameter representations or connectivity, an extensive 

mapping process may be required. Thus, the development of basic compilers for neuromorphic systems to perform  
the conversion from abstract network representation to machine code for the neuromorphic device will be an  important 
software component  
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VI. Applications  

In daily life, character recognition has high practical application value in the postal, transportation and  document 
management process, such as the recognition of car numbers and license plates in transportation  systems. However, the 
images captured in the natural environment are often blurred due to the limitations of camera hardware, or uncleared by 
the font is occluded and worn out. At these points, the complete information  

of the character cannot be obtain and identification of noisy characters become a key issue. At present, there are 
several methods for character recognition, which are mainly divided into a neural network, probability statistical , and fuzzy 
recognition. The traditional character recognition method cannot recognize  well under the condition of noise interference. 
However, the discrete Hopfield neural network has the function  of associative memory, which is reasonable for anti-noise 
processing. By applying this function, characters can  be recognized and satisfactory recognition results can be achieved. 
Besides, the convergence calculation  becomes fast for processing  

A. Case Study: Character Recognition: The associative memory can be designed based on the discrete Hopfield 
neural network concept, and the network can recognize the 10 digits that fall in the range from 0-9. Furthermore, despite any  
disturbance by certain noise due to the specified range of numbers, still has a good recognition effect by network feedback. At  
this point, the network is composed of a total of 10 stable states that reach to 0–9 numbers. These numbers are represented  by 
10×10 matrices and are directly described by the binary matrix. In the 10×10 matrix, the number pixel is represented by 1,  and 
the non-number pixel is defined −1 as blank display.  

B. Other Applications: Based on the discrete Hopfield neural network, it has the function of associative memory. In 
recent  years, many researchers have attempted to apply Hopfield network to various fields in order to replace conventional 
techniques  to address the issues, such as water quality evaluation and generator fault diagnosis, and have achieved considerable 
results by  applying aforementioned method. For example, in the Internet of Things (IoT) applications, where multiple links 
fail and break  the real-time transmission services, and due to this reason, the fault cannot be quickly located at that particular 
point. The relationship between the fault set and the alarm set can be established through the network topology information and 
the  transmission service, which is compatible with the proposed Hopfield Neural Network. The built-in Hopfield algorithm of 
the  energy function is used to resolve fault location, and hence, it is found that integration of aforementioned algorithm with 
the  

IoT will improve transmission services in smart cities.  

VII. Future Plan and Challenges  
For the future of neuromorphic chips, it is the key to break through the development direction of von Neumann’s  

structure limitations. Because the basic operations of neural networks are the processing of neurons and synapses,  the 
conventional processor instruction set (including ×86 and ARM, etc.) was developed for general- purpose  computing. These 
operations are arithmetic operations (addition, subtraction, multiplication and division) and logical operations (AND-OR-NOT) 
. It often requires hundreds or thousands of instructions to complete the  processing of neuron computing, making the low 
processing efficiency of the hardware inefficient. 

Currently, neural computing needs a completely different design than the vonNeumann architecture. The storage 
and processing are integrated into the neural network, whereas in von Neumann’s structure, there it is separated and realized 
respectively by memory and computational unit. There is a huge difference between the two computing when using current 
classical computers based on the von Neumann architecture (such as CPUs and  GPUs) to run neural network applications. 
They are inevitably restricted by a separate storage and handling   

structure, which has caused a lower efficiency over the impacts. Although the current FPGA and ASIC can  meet 
the requirements of some neural network application scenarios, a new generation of architecture like  neuromorphic chips 
and integrated computing design will be used as the underlying architecture to improve the  neural network computing in 
the long-term planning.  

There are still many problems in the research of new materials for the neuromorphic hardware. In the future,  
researchers in the neuromorphic disciplines consider new materials belonging to neuromorphic computing can  be found 
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in place of transistors to new hardware design. For example, the array composed of memristor that is a plastic element can 
be stored and processed to integrate for the neuromorphic hardware. It has a high switching  current ratio, a light effective 
mass, a large adjustable band gap and large electron mobility, which provides a favorable basis for successful preparation 
of low-power neuromorphic hardware.  

Eventually, the architecture, algorithm and programming scheme of adaptive neuromorphic computing is in a wide  
blank and a long way to reach a final goal that replaces to von Neumann’s structure in the artificial intelligence  discipline. But 
the frontiers of neuromorphic computing knowledge are being pushed farther outwards over the  time, and the future opens a 
bright prospect.  

VIII. Conclusion :  
Although neuromorphic computing has gained widespread attention in recent years, however, it is still  considered 

to be in the infancy stage. The existing solutions mostly focus on a single application at the hardware  or software level, 
and majority of them are only suitable for handling limited applications. In addition, there are  many software-based neural 
network applications that has been deployed, but hardware-based neural network design has been the key to the 
neuromorphic design. Convention neural network circuit implementation is  thought of time-consuming and inconvenient. 
In order to apply a simple and fast design method to neural  network hardware, which can optimize and manufacture 
neuromorphic computing systems, needs to  

systematically unificate the requirements of the software calculation process. Furthermore, it can process and  
improves the final software-level application indicators to quantify hardware attributes. Finally, a testable solution for a 
specification component can be achieved.  
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