Volume no :
9 |
Issue no :
1
Article Type :
Scholarly Article
Author :
Dr.P.Meenalochini
Published Date :
May, 2025
Publisher :
Journal of Artificial Intelligence and Cyber Security (JAICS)
Page No: 1 - 11
Abstract : Wireless Sensor Networks (WSNs) are critical for various applications, including environmental monitoring, healthcare, smart cities, and industrial automation. However, WSNs face several challenges, such as limited energy resources, network scalability, data transmission reliability, and the efficient allocation of network resources. To address these challenges, optimization techniques are essential for improving the overall performance of WSNs. Evolutionary algorithms (EAs) have emerged as powerful tools for optimizing the parameters and operation of WSNs. This paper explores the application of EAs, particularly Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), and Differential Evolution (DE), in optimizing key aspects of WSNs to enhance their efficiency and performance. In WSNs, energy efficiency is a primary concern due to the limited battery life of sensor nodes. EAs can be used to optimize energy consumption by selecting optimal routing paths, determining the best sleep-wake schedules, and managing the power usage of individual nodes. Additionally, these algorithms can help in optimizing the placement of sensor nodes to improve coverage while minimizing energy usage. The adaptability of EAs allows them to dynamically respond to changing network conditions, such as node failures or varying environmental factors, further enhancing network resilience and longevity. The scalability of WSNs is another challenge, especially when dealing with large numbers of sensor nodes. EAs can be utilized to design scalable network architectures, optimizing cluster formation, node grouping, and data aggregation strategies. By using evolutionary approaches, the network can be scaled efficiently without compromising performance, ensuring that large-scale deployments maintain optimal performance while reducing the overhead. Another critical aspect of WSN optimization is data transmission. EAs help to enhance the reliability of data transmission by optimizing routing protocols, load balancing, and fault tolerance mechanisms. By finding the best trade-offs between routing cost and data reliability, EAs can significantly reduce latency and improve the overall throughput of the network. Moreover, these algorithms can be integrated with machine learning techniques to predict network congestion and adjust routing decisions in real time. In conclusion, the application of evolutionary algorithms offers a promising approach to solving the complex optimization problems in WSNs. The flexibility, adaptability, and efficiency of EAs make them well-suited for enhancing the performance of WSNs, ensuring energy efficiency, scalability, and reliable data transmission across diverse applications. Future research should focus on hybridizing evolutionary algorithms with other intelligent optimization techniques to further enhance WSN capabilities.
Keyword Wireless sensor networks, evolutionary algorithms, network optimization, performance enhancement, energy efficiency, sensor node deployment, data routing optimization, genetic algorithms, swarm intelligence, metaheuristic techniques, WSN scalability, adaptive optimization, network lifetime improvement, intelligent routing, heuristic-based optimization.
Reference:
  1. Rajakannu, A., Ramachandran, K. P., & Vijayalakshmi, K. (2024). Condition Monitoring of Drill Bit for Manufacturing Sector Using Wavelet Analysis and Artificial Neural Network (ANN).
  2. Sakthibalan, P., Saravanan, M., Ansal, V., Rajakannu, A., Vijayalakshmi, K., & Vani, K. D. (2023). A Federated Learning Approach for ResourceConstrained IoT Security Monitoring. In Handbook on Federated Learning (pp. 131-154). CRC Press.
  3. Amuthakkannan, R., & Al Yaqoubi, M. H. A. (2023). Development of IoT based water pollution identification to avoid destruction of aquatic life and to improve the quality of water. International journal of engineering trends and technology71(10), 355-370.
  4. Amuthakkannan, R., Vijayalakshmi, K., Kamarunisha, M., Kumar, S. G., Ajithkumar, P., & Vikram, P. (2023). Optimization of multi parameters of WEDM using ANN based on principal component analysis for AA6063/B4C metal matrix composites. Materials Today: Proceedings.
  5. Amuthakkannan, R., Muthuraj, M., Ademi, E., Rajesh, V., & Ahammad, S. H. (2023). Analysis of fatigue strength on friction stir lap weld AA2198/Ti6Al4V joints. Materials Today: Proceedings.
  1. Sidharth, S. (2017). Cybersecurity Approaches for IoT Devices in Smart City Infrastructures.
  2. Sidharth, S. (2016). The Role of Artificial Intelligence in Enhancing Automated Threat Hunting 1Mr. Sidharth Sharma.
  3. Sivakumar, K., Perumal, T., Yaakob, R., & Marlisah, E. (2024, March). Unobstructive human activity recognition: Probabilistic feature extraction with optimized convolutional neural network for classification. In AIP Conference Proceedings(Vol. 2816, No. 1). AIP Publishing.
  4. Kalimuthu, S., Perumal, T., Yaakob, R., Marlisah, E., & Raghavan, S. (2024, March). Multiple human activity recognition using iot sensors and machine learning in device-free environment: Feature extraction, classification, and challenges: A comprehensive review. In AIP Conference Proceedings(Vol. 2816, No. 1). AIP Publishing.
  5. Bs, V., Madamanchi, S. C., & Kalimuthu, S. (2024, February). Early Detection of Down Syndrome Through Ultrasound Imaging Using Deep Learning Strategies—A Review. In 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE)(pp. 1-6). IEEE.
  6. Kalimuthu, S., Ponkoodanlingam, K., Jeremiah, P., Eaganathan, U., & Juslen, A. S. A. (2016). A comprehensive analysis on current botnet weaknesses and improving the security performance on botnet monitoring and detection in peer-to-peer botnet. Iarjset3(5), 120-127.
  1. Kalimuthu, S., Perumal, T., Marlisah, E., Yaakob, R., BS, V., & Ismail, N. H. (2024). HUMAN ACTIVITY RECOGNITION BASED ON DEVICE-FREE WI-FI SENSING: A COMPREHENSIVE REVIEW. Malaysian Journal of Computer Science37(3), 252-269.
  1. Sidharth, S. (2018). Post-Quantum Cryptography: Readying Security for the Quantum Computing Revolution.
  2. Sidharth, S. (2019). DATA LOSS PREVENTION (DLP) STRATEGIES IN CLOUD-HOSTED APPLICATIONS.
  1. Srinivasan, R. (2025). Friction Stir Additive Manufacturing of AA7075/Al2O3 and Al/MgB2 Composites for Improved Wear and Radiation Resistance in Aerospace Applications. J. Environ. Nanotechnol14(1), 295-305.
  2. Vijayalakshmi, K., Amuthakkannan, R., Ramachandran, K., & Rajkavin, S. A. (2024). Federated Learning-Based Futuristic Fault Diagnosis and Standardization in Rotating Machinery. SSRG International Journal of Electronics and Communication Engineering11(9), 223-236.
  3. Rajakannu, A. (2024). Implementation of Quality Function Deployment to Improve Online Learning and Teaching in Higher Education Institutes of Engineering in Oman. International Journal of Learning, Teaching and Educational Research23(12), 463-486.
  4. Rajakannu, A., Ramachandran, K. P., & Vijayalakshmi, K. (2024). Application of Artificial Intelligence in Condition Monitoring for Oil and Gas Industries.
  5. Al Haddabi, T., Rajakannu, A., & Al Hasni, H. (2024). Design and Development of a Low-Cost Parabolic Type Solar Dryer and Its Performance Evaluation in Drying of King Fish–Case Study in Oman.
  1. Sidharth, S. (2015). AI-Driven Detection and Mitigation of Misinformation Spread in Generated Content.
  2. Sidharth, S. (2015). Privacy-Preserving Generative AI for Secure Healthcare Synthetic Data Generation.
  3. Kalimuthu, S., Perumal, T., Yaakob, R., Marlisah, E., & Babangida, L. (2021, March). Human Activity Recognition based on smart home environment and their applications, challenges. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)(pp. 815-819). IEEE.
  4. Vidhyasagar, B. S., Lakshmanan, A. S., Abishek, M. K., & Kalimuthu, S. (2023, October). Video captioning based on sign language using yolov8 model. In IFIP International Internet of Things Conference(pp. 306-315). Cham: Springer Nature Switzerland.
  5. Ramanujam, E., Kalimuthu, S., Harshavardhan, B. V., & Perumal, T. (2023, October). Improvement in Multi-resident Activity Recognition System in a Smart Home Using Activity Clustering. In IFIP International Internet of Things Conference(pp. 316-334). Cham: Springer Nature Switzerland.
  6. Vidhyasagar, B. S., Arvindhan, M., Arulprakash, A., Kannan, B. B., & Kalimuthu, S. (2023, November). The crucial function that clouds access security brokers play in ensuring the safety of cloud computing. In 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI)(pp. 98-102). IEEE.
  7. Vidhyasagar, B. S., Harshagnan, K., Diviya, M., & Kalimuthu, S. (2023, October). Prediction of Tomato Leaf Disease Plying Transfer Learning Models. In IFIP International Internet of Things Conference(pp. 293-305). Cham: Springer Nature Switzerland.
  8. Sidharth, S. (2017). Access Control Frameworks for Secure Hybrid Cloud Deployments.
  9. Sidharth, S. (2016). Establishing Ethical and Accountability Frameworks for Responsible AI Systems.
  10. Turlapati, V. R., Thirunavukkarasu, T., Aiswarya, G., Thoti, K. K., Swaroop, K. R., & Mythily, R. (2024, November). The Impact of Influencer Marketing on Consumer Purchasing Decisions in the Digital Age Based on Prophet ARIMA-LSTM Model. In 2024 International Conference on Integrated Intelligence and Communication Systems (ICIICS)(pp. 1-6). IEEE.
  1. Turlapati, V. R., Vichitra, P., Raval, N., Khaja Mohinuddeen, J., & Mishra, B. R. (2024). Ethical Implications of Artificial Intelligence in Business Decision-making: A Framework for Responsible AI Adoption. Journal of Informatics Education and Research4(1).
  2. Sreekanthaswamy, N., Anitha, S., Singh, A., Jayadeva, S. M., Gupta, S., Manjunath, T. C., & Selvakumar, P. (2025). Digital Tools and Methods. Enhancing School Counseling With Technology and Case Studies25.
  1. Kalluri, S. V. S., & Narra, S. (2024). Predictive Analytics in ADAS Development: Leveraging CRM Data for Customer-Centric Innovations in Car Manufacturing. vol9, 6.
  2. Devi, K., & Indoria, D. (2021). Role of Micro Enterprises in the Socio-Economic Development of Women–A Case Study of Koraput District, Odisha. Design Engineering, 1135-1151.
  1. Indoria, D. (2021). AN APPLICATION OF FOREIGN DIRECT INVESTMENT. BIMS International Research Journal of Management and Commerce6(1), 01-04.
  1. Raja, D. R. K., Abas, Z. A., Kumar, G. H., Murthy, C. R., & Eswari, V. (2024). Hybrid optimization algorithm for resource-efficient and data-driven performance in agricultural IoT. TELKOMNIKA (Telecommunication Computing Electronics and Control)23(1), 201-210.
  2. Selvaprasanth, P., Karthick, R., Meenalochini, P., & Prabaharan, A. M. (2025). FPGA implementation of hybrid Namib beetle and battle royale optimization algorithm fostered linear phase finite impulse response filter design. Analog Integrated Circuits and Signal Processing123(2), 33.
  3. Deepa, R., Karthick, R., & Senthilkumar, R. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. Computer Standards & Interfaces92, 103934.
  1. Kumar, T. V., Karthick, R., Nandhini, C., Annalakshmi, M., & Kanna, R. R. (2025). 20 GaN Power HEMT-Based Amplifiers. Circuit Design for Modern Applications, 320.
  1. Geeitha, S., & Thangamani, M. (2018). Incorporating EBO-HSIC with SVM for gene selection associated with cervical cancer classification. Journal of medical systems42(11), 225.
  2. Thangamani, M., & Thangaraj, P. (2010). Integrated Clustering and Feature Selection Scheme for Text Documents. Journal of Computer Science6(5), 536.
  3. Gangadhar, C., Chanthirasekaran, K., Chandra, K. R., Sharma, A., Thangamani, M., & Kumar, P. S. (2022). An energy efficient NOMA-based spectrum sharing techniques for cell-free massive MIMO. International Journal of Engineering Systems Modelling and Simulation13(4), 284-288.
  4. Narmatha, C., Thangamani, M., & Ibrahim, S. J. A. (2020). Research scenario of medical data mining using fuzzy and graph theory. International Journal of Advanced Trends in Computer Science and Engineering9(1), 349-355.
  1. Thangamani, M., & Thangaraj, P. (2013). Fuzzy ontology for distributed document clustering based on genetic algorithm. Applied Mathematics & Information Sciences7(4), 1563-1574.
  1. Anandasubramanian, C. P., & Selvaraj, J. (2024). NAVIGATING BANKING LIQUIDITY-FACTORS, CHALLENGES, AND STRATEGIES IN CORPORATE LOAN PORTFOLIOS. Tec Empresarial6(1).
  1. Madem, S., Katuri, P. K., Kalra, A., & Singh, P. (2023, May). System Design for Financial and Economic Monitoring Using Big Data Clustering. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-7). IEEE.
  1. Srikanth, V., & Dhanapal, D. R. (2012). E-commerce online security and trust marks. International Journal of Computer Engineering and Technology3(2), 238-255.
  2. Srikanth, V., Walia, R., Augustine, P. J., Simla, J., & Jegajothi, B. (2022, March). Chaotic Whale Optimization based Node Localization Protocol for Wireless Sensor Networks Enabled Indoor Communication. In 2022 International Conference on Electronics and Renewable Systems (ICEARS)(pp. 702-707). IEEE.
  3. Srikanth, V., Natarajan, V., Jegajothi, B., Arumugam, S. D., & Nageswari, D. (2022, March). Fruit fly optimization with deep learning based reactive power optimization model for distributed systems. In 2022 International Conference on Electronics and Renewable Systems (ICEARS)(pp. 319-324). IEEE.
  4. Singh, S., Srikanth, V., Kumar, S., Saravanan, L., Degadwala, S., & Gupta, S. (2022, February). IOT Based Deep Learning framework to Diagnose Breast Cancer over Pathological Clinical Data. In 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)(Vol. 2, pp. 731-735). IEEE.
  5. Srikanth, V., & Dhanapal, R. (2011). A business review of e-retailing in India. International journal of business research and management1(3), 105-121.
  6. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS)(pp. 1-6). IEEE.
  7. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES)(pp. 1610-1616). IEEE.
  8. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS)(pp. 997-1002). IEEE.
  9. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA)(pp. 724-730). IEEE.
  1. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.
  1. Surendiran, R., Aarthi, R., Thangamani, M., Sugavanam, S., & Sarumathy, R. (2022). A Systematic Review Using Machine Learning Algorithms for Predicting Preterm Birth. International Journal of Engineering Trends and Technology70(5), 46-59.
  2. Thangamani, M., & Thangaraj, P. (2010). Ontology based fuzzy document clustering scheme. Modern Applied Science4(7), 148.
  3. Ibrahim, S. J. A., & Thangamani, M. (2018, November). Momentous Innovations in the prospective method of Drug development. In Proceedings of the 2018 International Conference on Digital Medicine and Image Processing(pp. 37-41).
  4. Ramesh, T. R., Lilhore, U. K., Poongodi, M., Simaiya, S., Kaur, A., & Hamdi, M. (2022). Predictive analysis of heart diseases with machine learning approaches. Malaysian Journal of Computer Science, 132-148.
  5. Ramesh, T. R., Vijayaragavan, M., Poongodi, M., Hamdi, M., Wang, H., & Bourouis, S. (2022). Peer-to-peer trust management in intelligent transportation system: An Aumann’s agreement theorem based approach. ICT Express8(3), 340-346.
  6. Ramesh, T. R., & Kavitha, C. (2013). Web user interest prediction framework based on user behavior for dynamic websites. Life Sci. J10(2), 1736-1739.
  7. Ali, A., Naeem, S., Anam, S., & Ahmed, M. M. (2022). Machine learning for intrusion detection in cyber security: Applications, challenges, and recommendations. UMT Artif. Intell. Rev2(2), 41-64.
  1. Ramesh, T. R., Raghavendra, R., Vantamuri, S. B., Pallavi, R., & Easwaran, B. (2023). IMPROVING THE QUALITY OF VANET COMMUNICATION USING FEDERATED PEER-TO-PEER LEARNING. ICTACT Journal on Communication Technology14(1).
  1. Kalaiselvi, B., & Thangamani, M. (2020). An efficient Pearson correlation based improved random forest classification for protein structure prediction techniques. Measurement162, 107885.
  2. Prabhu Kavin, B., Karki, S., Hemalatha, S., Singh, D., Vijayalakshmi, R., Thangamani, M., … & Adigo, A. G. (2022). Machine learning‐based secure data acquisition for fake accounts detection in future mobile communication networks. Wireless Communications and Mobile Computing2022(1), 6356152.
  3. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International44(3), 18261-18271.
  4. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES)(pp. 1603-1609). IEEE.
  5. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS)(pp. 1-6). IEEE.
  6. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES)(pp. 1631-1636). IEEE.
  1. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
  1. Jayapandiyan, J. R., Kavitha, C., & Sakthivel, K. (2020). Enhanced least significant bit replacement algorithm in spatial domain of steganography using character sequence optimization. Ieee Access8, 136537-136545.
  2. Sakthivel, K., Jayanthiladevi, A., & Kavitha, C. (2016). Automatic detection of lung cancer nodules by employing intelligent fuzzy c-means and support vector machine. BIOMEDICAL RESEARCH-INDIA27, S123-S127.
  3. Sakthivel, K., Nallusamy, R., & Kavitha, C. (2014). Color image segmentation using SVM pixel classification image. World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering8(10), 1924-1930.
  4. Jayapandiyan, J. R., Kavitha, C., & Sakthivel, K. (2020). Optimal secret text compression technique for steganographic encoding by dynamic ranking algorithm. In Journal of Physics: Conference Series(Vol. 1427, No. 1, p. 012005). IOP Publishing.
  1. Sakthivel, K., Abinaya, R., Nivetha, I., & Kumar, R. A. (2014). Region based image retrieval using k-means and hierarchical clustering algorithms. International Journal of Innovative Research in Science, Engineering and Technology3(1), 1255-1260.
  1. Prasad, V., Dangi, A. K., Tripathi, R., & Kumar, N. (2023). Educational Perspective of Intellectual Property Rights. Russian Law Journal11(2S), 257-268.
  2. Shreevamshi, D. V. K., Jadhavar, S. S., Vemuri, V. P., & Kumar, A. (2022). Role Of Green HRM in Advocating Pro-Environmental Behavior Among Employees. Journal of Positive School Psychology6(2), 3117-3129.
  3. Somasundaram, R., Chandra, S., Tamilarasu, J., Kinagi, A. M., & Naveen, S. (2025). Human Resource Development (HRD) Strategies for Emerging Entrepreneurship: Leveraging UX Design for Sustainable Digital Growth. In Navigating Usability and User Experience in a Multi-Platform World(pp. 221-248). IGI Global.
  1. Khachariya, H. D., Naveen, S., Al-Nussairi, A. K. J., Abood, B. S. Z., Alanssari, A. I., & Shaker, Z. Y. (2024, November). Deep Learning for Workforce Planning and Analytics. In 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES) (pp. 1-5). IEEE.
  1. Perumal, R. A. (2025). Innovative Applications of AI and Machine Learning in Fraud Detection for Insurance Claims. JOURNAL OF ADVANCE AND FUTURE RESEARCH3(2), 18-23.
  2. Thamma, S. R. T. S. R. (2024). Optimization of Generative AI Costs in Multi-Agent and Multi-Cloud Systems.

Thamma, S. R. T. S. R. (2024). Revolutionizing Healthcare: Spatial Computing Meets Generative AI.