Volume no :
9 |
Issue no :
1
Article Type :
Scholarly Article
Author :
Mr. Selvaprasanth P
Published Date :
May, 2025
Publisher :
Journal of Artificial Intelligence and Cyber Security (JAICS)
Page No: 1 - 11
Abstract : The increasing demand for sustainable energy consumption and the proliferation of smart devices have driven the development of Intelligent Home Energy Management Systems (HEMS). This paper proposes a novel IoT and AI-driven HEMS that enables real-time monitoring, control, and optimization of household energy usage. By integrating smart sensors and appliances with a centralized IoT gateway, the system collects real-time energy data, which is then processed using advanced predictive analytics based on machine learning algorithms. The system learns user behavior, weather patterns, and energy pricing models to forecast consumption and suggest optimal usage schedules. Additionally, it can automate load shifting and appliance control to reduce peak demand and energy costs while enhancing user comfort. The proposed HEMS aims to contribute to smarter grid interactions, increased energy efficiency, and a reduction in carbon footprint. Simulation and experimental results demonstrate the system’s effectiveness in achieving significant energy savings and intelligent decision-making.
Keyword Home Energy Management System (HEMS), Internet of Things (IoT), Artificial Intelligence (AI), Predictive Analytics, Smart Grid, Energy Optimization, Load Forecasting, Machine Learning, Energy Efficiency, Demand Response.
Reference:
  1. Srinivasan, R. (2025). Friction Stir Additive Manufacturing of AA7075/Al2O3 and Al/MgB2 Composites for Improved Wear and Radiation Resistance in Aerospace Applications. J. Environ. Nanotechnol14(1), 295-305.
  2. Vijayalakshmi, K., Amuthakkannan, R., Ramachandran, K., & Rajkavin, S. A. (2024). Federated Learning-Based Futuristic Fault Diagnosis and Standardization in Rotating Machinery. SSRG International Journal of Electronics and Communication Engineering11(9), 223-236.
  3. Rajakannu, A. (2024). Implementation of Quality Function Deployment to Improve Online Learning and Teaching in Higher Education Institutes of Engineering in Oman. International Journal of Learning, Teaching and Educational Research23(12), 463-486.
  4. Rajakannu, A., Ramachandran, K. P., & Vijayalakshmi, K. (2024). Application of Artificial Intelligence in Condition Monitoring for Oil and Gas Industries.
  5. Al Haddabi, T., Rajakannu, A., & Al Hasni, H. (2024). Design and Development of a Low-Cost Parabolic Type Solar Dryer and Its Performance Evaluation in Drying of King Fish–Case Study in Oman.
  1. Sidharth, S. (2023). AI-Driven Anomaly Detection for Advanced Threat Detection.
  2. Sidharth, S. (2023). Homomorphic Encryption: Enabling Secure Cloud Data Processing.
  3. Devi, K., & Indoria, D. (2021). Digital Payment Service In India: A Review On Unified Payment Interface.  J. of Aquatic Science12(3), 1960-1966.
  4. Devi, K., & Indoria, D. (2023). The Critical Analysis on The Impact of Artificial Intelligence on Strategic Financial Management Using Regression Analysis. Res Militaris13(2), 7093-7102.
  1. Devi, K., & Indoria, D. (2022, December). Study on the waves of blockchain over the financial sector. In List Forum für Wirtschafts-und Finanzpolitik (Vol. 48, No. 3, pp. 181-201). Berlin/Heidelberg: Springer Berlin Heidelberg.
  1. Sidharth, S. (2024). Strengthening Cloud Security with AI-Based Intrusion Detection Systems.
  1. Sidharth, S. (2022). Enhancing Generative AI Models for Secure and Private Data Synthesis.
  2. Rajakannu, A., Ramachandran, K. P., & Vijayalakshmi, K. (2024). Condition Monitoring of Drill Bit for Manufacturing Sector Using Wavelet Analysis and Artificial Neural Network (ANN).
  3. Sakthibalan, P., Saravanan, M., Ansal, V., Rajakannu, A., Vijayalakshmi, K., & Vani, K. D. (2023). A Federated Learning Approach for ResourceConstrained IoT Security Monitoring. In Handbook on Federated Learning (pp. 131-154). CRC Press.
  4. Amuthakkannan, R., & Al Yaqoubi, M. H. A. (2023). Development of IoT based water pollution identification to avoid destruction of aquatic life and to improve the quality of water. International journal of engineering trends and technology71(10), 355-370.
  5. Amuthakkannan, R., Vijayalakshmi, K., Kamarunisha, M., Kumar, S. G., Ajithkumar, P., & Vikram, P. (2023). Optimization of multi parameters of WEDM using ANN based on principal component analysis for AA6063/B4C metal matrix composites. Materials Today: Proceedings.
  6. Amuthakkannan, R., Muthuraj, M., Ademi, E., Rajesh, V., & Ahammad, S. H. (2023). Analysis of fatigue strength on friction stir lap weld AA2198/Ti6Al4V joints. Materials Today: Proceedings.
  1. Sidharth, S. (2021). Multi-Cloud Environments: Reducing Security Risks in Distributed Architectures.
  1. Sidharth, S. (2020). The Rising Threat of Deepfakes: Security and Privacy Implications.
  1. Raja, D. R. K., Abas, Z. A., Kumar, G. H., Murthy, C. R., & Eswari, V. (2024). Hybrid optimization algorithm for resource-efficient and data-driven performance in agricultural IoT. TELKOMNIKA (Telecommunication Computing Electronics and Control)23(1), 201-210.
  2. Kumar, G. H., Raja, D. K., Varun, H. D., & Nandikol, S. (2024, November). Optimizing Spatial Efficiency Through Velocity-Responsive Controller in Vehicle Platooning. In 2024 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS)(pp. 1-5). IEEE.
  3. Kumar, G. H., KN, V. S., Patil, P., Moinuddin, M., Faraz, M., & Kumar, Y. D. (2024, September). Human-Computer Interaction for Drone Control through Hand Gesture Recognition with MediaPipe Integration. In 2024 International Conference on Vehicular Technology and Transportation Systems (ICVTTS)(Vol. 1, pp. 1-6). IEEE.
  4. Kumar, G. H., Raja, D. K., Suresh, S., Kottamala, R., & Harsith, M. (2024, August). Vision-Guided Pick and Place Systems Using Raspberry Pi and YOLO. In 2024 2nd International Conference on Networking, Embedded and Wireless Systems (ICNEWS)(pp. 1-7). IEEE.
  1. Raja, D. K., Abas, Z., Eswari, V., Kumar, G. H., & Kalpanad, V. (2024). Integrating RFID Technology with Student Information Systems. High Performance Computing, Smart Devices and Networks, 125.
  1. Kalimuthu, S., Perumal, T., Yaakob, R., Marlisah, E., & Babangida, L. (2021, March). Human Activity Recognition based on smart home environment and their applications, challenges. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)(pp. 815-819). IEEE.
  2. Vidhyasagar, B. S., Lakshmanan, A. S., Abishek, M. K., & Kalimuthu, S. (2023, October). Video captioning based on sign language using yolov8 model. In IFIP International Internet of Things Conference(pp. 306-315). Cham: Springer Nature Switzerland.
  3. Ramanujam, E., Kalimuthu, S., Harshavardhan, B. V., & Perumal, T. (2023, October). Improvement in Multi-resident Activity Recognition System in a Smart Home Using Activity Clustering. In IFIP International Internet of Things Conference(pp. 316-334). Cham: Springer Nature Switzerland.
  4. Vidhyasagar, B. S., Arvindhan, M., Arulprakash, A., Kannan, B. B., & Kalimuthu, S. (2023, November). The crucial function that clouds access security brokers play in ensuring the safety of cloud computing. In 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI)(pp. 98-102). IEEE.
  5. Vidhyasagar, B. S., Harshagnan, K., Diviya, M., & Kalimuthu, S. (2023, October). Prediction of Tomato Leaf Disease Plying Transfer Learning Models. In IFIP International Internet of Things Conference(pp. 293-305). Cham: Springer Nature Switzerland.
  6. Sidharth, S. (2019). Quantum-Enhanced Encryption Methods for Securing Cloud Data.
  7. Sidharth, S. (2019). Enhancing Security of Cloud-Native Microservices with Service Mesh Technologies.
  8. Sivakumar, K., Perumal, T., Yaakob, R., & Marlisah, E. (2024, March). Unobstructive human activity recognition: Probabilistic feature extraction with optimized convolutional neural network for classification. In AIP Conference Proceedings(Vol. 2816, No. 1). AIP Publishing.
  9. Kalimuthu, S., Perumal, T., Yaakob, R., Marlisah, E., & Raghavan, S. (2024, March). Multiple human activity recognition using iot sensors and machine learning in device-free environment: Feature extraction, classification, and challenges: A comprehensive review. In AIP Conference Proceedings(Vol. 2816, No. 1). AIP Publishing.
  10. Bs, V., Madamanchi, S. C., & Kalimuthu, S. (2024, February). Early Detection of Down Syndrome Through Ultrasound Imaging Using Deep Learning Strategies—A Review. In 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE)(pp. 1-6). IEEE.
  11. Kalimuthu, S., Ponkoodanlingam, K., Jeremiah, P., Eaganathan, U., & Juslen, A. S. A. (2016). A comprehensive analysis on current botnet weaknesses and improving the security performance on botnet monitoring and detection in peer-to-peer botnet. Iarjset3(5), 120-127.
  1. Kalimuthu, S., Perumal, T., Marlisah, E., Yaakob, R., BS, V., & Ismail, N. H. (2024). HUMAN ACTIVITY RECOGNITION BASED ON DEVICE-FREE WI-FI SENSING: A COMPREHENSIVE REVIEW. Malaysian Journal of Computer Science37(3), 252-269.
  1. Reddy, C. S., & Aradhya, G. B. (2020). Driving forces for the success of food ordering and delivery apps: a descriptive study. International Journal of Engineering and Management Research (IJEMR)10(2), 131-134.
  2. Patil, B., TK, S., Kumar, B. S., & Shankar, M. S. (2021). Impact of consumer behavior based on store atmospherics. PalArch’s Journal of Archaeology of Egypt/Egyptology18(09), 480-492.
  3. Reddy, C. S., & Aradhya, G. B. (2017). Impact of Online Consumer Reviews on Consumer Purchase Decision in Bangalore. International Journal of Allied Practice, Research and Review4(3), 1-7.
  1. Mehta, P., & Sharma, K. (2013). Impact of employer branding on retention of employees of management institutes. Abhinav2(2), 59-71.
  1. Turlapati, V. R., Vichitra, P., Raval, N., Khaja Mohinuddeen, J., & Mishra, B. R. (2024). Ethical Implications of Artificial Intelligence in Business Decision-making: A Framework for Responsible AI Adoption. Journal of Informatics Education and Research4(1).
  2. Raju, P., Arun, R., Turlapati, V. R., Veeran, L., & Rajesh, S. (2024). Next-Generation Management on Exploring AI-Driven Decision Support in Business. In Optimizing Intelligent Systems for Cross-Industry Application(pp. 61-78). IGI Global.
  3. Indoria, D., & Devi, K. (2021). An Analysis On The Consumers Perception Towards Upi (Unified Payments Interface).  J. of Aquatic Science12(2), 1967-1976.
  4. Devi, K., & Indoria, D. (2024). Impact of Russia-Ukraine War on the Financial Sector of India. Drishtikon: A Management Journal15(1).
  1. Devi, K., & Indoria, D. (2021). Role of Micro Enterprises in the Socio-Economic Development of Women–A Case Study of Koraput District, Odisha. Design Engineering, 1135-1151.
  1. Kumar, T. V. (2025). Scalable Kubernetes Workload Orchestration for Multi-Cloud Environments.
  2. Kumar, T. V. (2024). Enhanced Kubernetes Monitoring Through Distributed Event Processing.
  3. Kalaiselvi, B., & Thangamani, M. (2020). An efficient Pearson correlation based improved random forest classification for protein structure prediction techniques. Measurement162, 107885.
  4. Prabhu Kavin, B., Karki, S., Hemalatha, S., Singh, D., Vijayalakshmi, R., Thangamani, M., … & Adigo, A. G. (2022). Machine learning‐based secure data acquisition for fake accounts detection in future mobile communication networks. Wireless Communications and Mobile Computing2022(1), 6356152.
  5. Geeitha, S., & Thangamani, M. (2018). Incorporating EBO-HSIC with SVM for gene selection associated with cervical cancer classification. Journal of medical systems42(11), 225.
  6. Thangamani, M., & Thangaraj, P. (2010). Integrated Clustering and Feature Selection Scheme for Text Documents. Journal of Computer Science6(5), 536.
  1. Gangadhar, C., Chanthirasekaran, K., Chandra, K. R., Sharma, A., Thangamani, M., & Kumar, P. S. (2022). An energy efficient NOMA-based spectrum sharing techniques for cell-free massive MIMO. International Journal of Engineering Systems Modelling and Simulation13(4), 284-288.
  1. Kumar, T. V. (2023). REAL-TIME DATA STREAM PROCESSING WITH KAFKA-DRIVEN AI MODELS.
  2. Kumar, T. V. (2023). Efficient Message Queue Prioritization in Kafka for Critical Systems.
  3. Kumar, J. S., Archana, B., Muralidharan, K., & Kumar, V. S. (2025). Graph Theory: Modelling and Analyzing Complex System. Metallurgical and Materials Engineering31(3), 70-77.
  1. Kumar, J. S., Archana, B., Muralidharan, K., & Srija, R. (2025). Spectral Graph Theory: Eigen Values Laplacians and Graph Connectivity. Metallurgical and Materials Engineering31(3), 78-84.
  1. Anandasubramanian, C. P., & Selvaraj, J. (2024). NAVIGATING BANKING LIQUIDITY-FACTORS, CHALLENGES, AND STRATEGIES IN CORPORATE LOAN PORTFOLIOS. Tec Empresarial6(1).
  2. Madem, S., Katuri, P. K., Kalra, A., & Singh, P. (2023, May). System Design for Financial and Economic Monitoring Using Big Data Clustering. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)(pp. 1-7). IEEE.
  3. Kumar, T. V. (2022). AI-Powered Fraud Detection in Real-Time Financial Transactions.
  4. Kumar, T. V. (2021). NATURAL LANGUAGE UNDERSTANDING MODELS FOR PERSONALIZED FINANCIAL SERVICES.
  5. Hussain, M. I., Shamim, M., Ravi Sankar, A. V., Kumar, M., Samanta, K., & Sakhare, D. T. (2022). The effect of the Artificial Intelligence on learning quality & practices in higher education. Journal of Positive School Psychology, 1002-1009.
  6. Prasad, V., Dangi, A. K., Tripathi, R., & Kumar, N. (2023). Educational Perspective of Intellectual Property Rights. Russian Law Journal11(2S), 257-268.
  7. Shreevamshi, D. V. K., Jadhavar, S. S., Vemuri, V. P., & Kumar, A. (2022). Role Of Green HRM in Advocating Pro-Environmental Behavior Among Employees. Journal of Positive School Psychology6(2), 3117-3129.
  8. Somasundaram, R., Chandra, S., Tamilarasu, J., Kinagi, A. M., & Naveen, S. (2025). Human Resource Development (HRD) Strategies for Emerging Entrepreneurship: Leveraging UX Design for Sustainable Digital Growth. In Navigating Usability and User Experience in a Multi-Platform World(pp. 221-248). IGI Global.
  9. Khachariya, H. D., Naveen, S., Al-Nussairi, A. K. J., Abood, B. S. Z., Alanssari, A. I., & Shaker, Z. Y. (2024, November). Deep Learning for Workforce Planning and Analytics. In 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES)(pp. 1-5). IEEE.
  10. Kapse, A. S., Shreevamshi, S., Reddy, R., & Reddy, R. (2023). A Survey on Helmet Detection by CNN Algorithm. In ITM Web of Conferences(Vol. 56, p. 05004). EDP Sciences.
  11. Nazeer, I., Dwivedi, T., Srivastava, N., & Ojha, M. (2024). Influence of Social Media on HR Practices: Recruitment, Engagement, and Employer Branding.
  12. Perumal, R. A. (2025). Innovative Applications of AI and Machine Learning in Fraud Detection for Insurance Claims. JOURNAL OF ADVANCE AND FUTURE RESEARCH3(2), 18-23.
  13. Kumar, T. V. (2020). Generative AI Applications in Customizing User Experiences in Banking Apps.
  14. Kumar, T. V. (2020). FEDERATED LEARNING TECHNIQUES FOR SECURE AI MODEL TRAINING IN FINTECH.
  15. Srikanth, V., & Dhanapal, D. R. (2012). E-commerce online security and trust marks. International Journal of Computer Engineering and Technology3(2), 238-255.
  16. Srikanth, V., Walia, R., Augustine, P. J., Simla, J., & Jegajothi, B. (2022, March). Chaotic Whale Optimization based Node Localization Protocol for Wireless Sensor Networks Enabled Indoor Communication. In 2022 International Conference on Electronics and Renewable Systems (ICEARS)(pp. 702-707). IEEE.
  17. Srikanth, V., Natarajan, V., Jegajothi, B., Arumugam, S. D., & Nageswari, D. (2022, March). Fruit fly optimization with deep learning based reactive power optimization model for distributed systems. In 2022 International Conference on Electronics and Renewable Systems (ICEARS)(pp. 319-324). IEEE.
  18. Singh, S., Srikanth, V., Kumar, S., Saravanan, L., Degadwala, S., & Gupta, S. (2022, February). IOT Based Deep Learning framework to Diagnose Breast Cancer over Pathological Clinical Data. In 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)(Vol. 2, pp. 731-735). IEEE.
  19. Srikanth, V., & Dhanapal, R. (2011). A business review of e-retailing in India. International journal of business research and management1(3), 105-121.
  20. Srikanth, V. (2011). An Insight to Build an E-Commerce Website with OSCommerce. International Journal of Computer Science Issues (IJCSI)8(3), 332.
  21. Srikanth, V., Aswini, P., Asha, V., Pithamber, K., Sobti, R., & Salman, Z. (2024, November). Development of an Electric Automation Control Model Using Artificial Intelligence. In 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES)(pp. 1-5). IEEE.
  22. Punithavathi, R., Selvi, R. T., Latha, R., Kadiravan, G., Srikanth, V., & Shukla, N. K. (2022). Robust Node Localization with Intrusion Detection for Wireless Sensor Networks. Intelligent Automation & Soft Computing33(1).
  23. Srikanth, V., Aswini, P., Chandrashekar, R., Sirisha, N., Kumar, M., & Adnan, K. (2024, November). Machine Learning-Based Analogue Circuit Design for Stage Categorization and Evolutionary Optimization. In 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES)(pp. 1-6). IEEE.
  24. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International44(3), 18261-18271.
  25. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES)(pp. 1603-1609). IEEE.
  26. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS)(pp. 1-6). IEEE.
  27. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES)(pp. 1631-1636). IEEE.
  28. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT)(pp. 1-5). IEEE.
  29. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS)(pp. 1-6). IEEE.
  30. Jayapandiyan, J. R., Kavitha, C., & Sakthivel, K. (2020). Enhanced least significant bit replacement algorithm in spatial domain of steganography using character sequence optimization. Ieee Access8, 136537-136545.
  31. Sakthivel, K., Jayanthiladevi, A., & Kavitha, C. (2016). Automatic detection of lung cancer nodules by employing intelligent fuzzy c-means and support vector machine. BIOMEDICAL RESEARCH-INDIA27, S123-S127.
  32. Sakthivel, K., Nallusamy, R., & Kavitha, C. (2014). Color image segmentation using SVM pixel classification image. World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering8(10), 1924-1930.
  33. Jayapandiyan, J. R., Kavitha, C., & Sakthivel, K. (2020). Optimal secret text compression technique for steganographic encoding by dynamic ranking algorithm. In Journal of Physics: Conference Series(Vol. 1427, No. 1, p. 012005). IOP Publishing.
  34. Sakthivel, K., Abinaya, R., Nivetha, I., & Kumar, R. A. (2014). Region based image retrieval using k-means and hierarchical clustering algorithms. International Journal of Innovative Research in Science, Engineering and Technology3(1), 1255-1260.
  35. Kalluri, V. S. Impact of AI-Driven CRM on Customer Relationship Management and Business Growth in the Manufacturing Sector. International Journal of Innovative Science and Research Technology (IJISRT).
  36. Kalluri, V. S. Optimizing Supply Chain Management in Boiler Manufacturing through AI-enhanced CRM and ERP Integration. International Journal of Innovative Science and Research Technology (IJISRT).
  37. Kalluri, S. V. S., & Narra, S. (2024). Predictive Analytics in ADAS Development: Leveraging CRM Data for Customer-Centric Innovations in Car Manufacturing. vol9, 6.
  38. Kalluri, V. S., Malineni, S. C., Seenivasan, M., Sakkarai, J., Kumar, D., & Ananthan, B. (2025). Enhancing manufacturing efficiency: leveraging CRM data with Lean-based DL approach for early failure detection. Bulletin of Electrical Engineering and Informatics14(3), 2319-2329.