Volume no :
9 |
Issue no :
02
Article Type :
Scholarly Article
Author :
Prof P.T.Talole, Mr.Harshal.R.Garad, Mr.Navnath.R.Daud, Mr.Kiran.P.Hivale, Miss.Nikita.E.Thosare
Published Date :
June, 2025
Publisher :
Journal of Artificial Intelligence and Cyber Security (JAICS)
Page No: 1 - 8
Abstract : In this modern world, almost everyone uses ATM machines which allow people to transfer and withdraw cash. A fingerprint method in the to make the transaction easier. The fingerprints are ATM System improve safety and security for people unique for each person. There is no insecurity of losing an ATM card and no requirement to carry an ATM card with you every time. On comparison of different technologies for ATM security, the fingerprint technology operates betterand safer than others. These reasons make this mechanism an effortless and secure way of transaction and also maintains a coherent ambience with users and ATM machines. This is the most latest technology in electronic cash transactions
Keyword Enhancing ATM, biometric based ATM,security system for ATM, and fingerprint based ATM.
Reference:
  1. Pranali Ravikant Hatwar and Ravikant B Hatwar, BioSignal based Biometric  Practices, International Journal of Creative Research Thoughts, Vol. 1, No. 4, pp. 1- 9, 2013.
  2. Edmund Spinella, Biometric Scanning Technologies: Finger, Facial and Retinal  Scanning, Available at:
  3. https: henticati on/ biometricscanningtechnologies- finger-facialretinal-sca nning 1177.
  4. Gu J, Zhou J, Zhang D.A combination model for orientation field of fingerprints.  Pattern Recognition, 2004, 37:543-553.
  5. N. Selvaraj and G. Sekar, A Method to enhance the Safety Level of the ATM banking  industry using AES Algorithm, International Journal of Computer Applications, Vol.  3, No. 6, pp. 5-9, 2010.
  6. Haldorai and A. Ramu, Security and channel noise management in cognitive  radio networks, Computers & Electrical Engineering, vol. 87, p. 106784,  Oct. 2020. doi:10.1016/j.compeleceng.2020.106784
  7. Haldorai and A. Ramu, Canonical Correlation Analysis Based Hyper Basis  Feedforward Neural Network Classification for Urban Sustainability Neural  Processing Letters, Aug. 2020. doi:10.1007/s11063-020-10327-3
  8. J. Yang N. Xiong, A.V. Vasilakos, Z. Fang, D. Park,
  9. Xu, S. Yoon, S. Xie and Y. Yang A Fingerprint Recognition Scheme supported  Assembling Invariant Moments for Cloud Computing Communications, IEEE  SystemsJournal, Vol. 5, No. 4, pp. 574-583, 2011.
  10. J. Leon G. Sanchez G. Aguilar, L. Toscano, H. Perez and J.M. Ramirez, Fingerprint  VerificationApplying Invariant Moments, Proceedings of IEEE International  Midwest Symposium on Circuits and Systems, pp. 751-757, 2009.
  11. LO Gorman Overview of Fingerprint Verification Technologies, Information  Security Technical Report, Vol. 3, No. 1, p. 21-32, 1998.