Volume no :
9 |Issue no :
02Article Type :
Scholarly ArticleAuthor :
Miss.Anagha S. Maske, Mr.Badrinath A. Gore, Miss.M.A.PatilPublished Date :
June, 2025Publisher :
Journal of Artificial Intelligence and Cyber Security (JAICS)[1] Khamassi I, Sayed-Mouchaweh M, Hammami M, et al. Discussion and review on evolving data streams and concept drift adapting. Evol Syst. 2018;9(1):1–23. doi:10.1007/s12530-016-9168-2
[2] Demšar J, Bosnić Z. Detecting concept drift in data streams using model explanation. Expert Syst Appl. 2018;92:546–559. doi:10.1016/j.eswa.2017.10.003
[3] Rossi ALD, Souza BFD, Soares C, et al. A guidance of data stream characterization for meta-learning. Intell Data Anal. 2017;21(4):1015–1035. doi:10.3233/IDA-160083
[4] Cabral DRdL, Barros RSMd. Concept drift detection based on Fisher’s exact test. Inf Sci (Ny). 2018;442– 443:220–234. doi:10.1016/j.ins.2018.02.054
[5] JadhavA, Deshpande L. An efficient approach to detect concept drifts in data streams. In: Proceedings – 7th IEEE International Advanced Computing Conference, IACC 2017; 2017. p. 28–32.
[6] Kelly MG, Hand DJ, Adams NM. The impact of changing populations on classifier performance. Proc Fifth ACM SIGKDD Int Conf Knowl Discov Data Min – KDD ‘99. 1999;32(2):367–371. doi:10.1145/312129.312285