Volume no :
9 |
Issue no :
02
Article Type :
Scholarly Article
Author :
Mr. Ganesh Badar, Mr. Nilesh Lokhande, Mr. Harshal Kute, Dr. P. S. Gawande
Published Date :
June, 2025
Publisher :
Journal of Artificial Intelligence and Cyber Security (JAICS)
Page No: 1 - 9
Abstract : Hand gesture recognition is transforming the way humans interact with computers, enabling intuitive, touch-free control for a wide range of applications. The Air Canvas project introduces a web-based virtual drawing tool designed to replace traditional whiteboards. With this system, users can draw and collaborate in real-time using hand gestures, eliminating the need for physical input devices. Built with Python, Flask, HTML, CSS, and JavaScript, it utilizes Google MediaPipe for real-time hand tracking and OpenCV for image processing, ensuring seamless gesture recognition.Unlike conventional drawing solutions that depend on styluses or touchscreen hardware, Air Canvas offers a fully contactless experience, making it particularly advantageous in educational, artistic, and professional settings. By incorporating computer vision and AI-driven gesture detection, the platform ensures precise recognition and a natural user experience.This system enhances collaboration and creativity by enabling gesture-based digital interaction in an accessible, browser-based environment. Its cross-platform compatibility allows users to access the tool from any device without extra software requirements, positioning Air Canvas as an innovative and cost-effective alternative to traditional whiteboards.
Keyword Hand Tracking,MediaPipe, OpenCV, Flask.
Reference:

1) Al Farid, F.; Hashim, N.; Abdullah, J.; Bhuiyan, M.R.; Shahida Mohd Isa, W.N.; Uddin, J.; Haque, M.A.; Husen,  M.N. A Structured and Methodological Review on Vision-Based Hand Gesture Recognition System. J. Imaging  2022, 8, 153. https://doi.org/10.3390/jimaging8060153

Sahoo, J.P.; Prakash, A.J.; Pławiak, P.; Samantray, S. Real-Time Hand Gesture Recognition Using FineTuned  Convolutional Neural Network. Sensors 2022, 22, 706. https://doi.org/10.3390/s22030706

2) Gadekallu, T. R., Srivastava, G., Liyanage, M., M., I., Chowdhary, C. L., Koppu, S., et al. (2022). Hand Gesture  Recognition Based on a Harris Hawks Optimized Convolution Neural Network. Comput. Electr. Eng. 100, 107836.  doi:10.1016/j.compeleceng.2022.107836

3) Lim, M., Kotsani, N., & Hartono, P. (2022). Handmate: An Accessible Browser-based Controller for Web Audio  and Midi using AI Hand-Tracking. International Conference on New Interfaces for Musical Expression.  https://doi.org/10.21428/92fbeb44.40c13869

4) Khawaritzmi Abdallah AHMAD, Dian Christy SILPANI, Kaori YOSHIDA Hand Gesture Recognition by Hand  Landmark Classification Released on J-STAGE: May 31, 2022 https://doi.org/10.5057/isase.2022- C000026

5) Lu Liu, Wenlong Xu, Yao Ni, Zhipeng Xu, Binbin Cui, Jiaqi Liu, Huanhuan Wei, and Wentao Xu ACS Nano  2022 Stretchable Neuromorphic Transistor That Combines Multisensing and Information Processing for Epidermal  Gesture Recognition 16 (2), 2282-2291 DOI: 10.1021/acsnano.1c08482

6) S. Cai, Z. Lu, L. Guo, Z. Qing and L. Yao, “The LET Procedure for Gesture Recognition With Multiple Forearm  Angles,” in IEEE Sensors Journal, vol. 22, no. 13, pp. 13226-13233, 1 July1, 2022, doi:  10.1109/JSEN.2022.3177475.

7) Wang, H., Zhang, Y., Liu, C. et al. sEMG based hand gesture recognition with deformable convolutional  network. Int. J. Mach. Learn. & Cyber. 13, 1729–1738 (2022). https://doi.org/10.1007/s13042-021- 01482-7

8) Bhushan, S.; Alshehri, M.; Keshta, I.; Chakraverti, A.K.; Rajpurohit, J.; Abugabah, A. An Experimental Analysis  of Various Machine Learning Algorithms for Hand Gesture Recognition. Electronics 2022, 11, 968.  https://doi.org/10.3390/electronics11060968

9) Bhaumik, G., Verma, M., Govil, M.C. et al. HyFiNet: Hybrid feature attention network for hand gesture  recognition. Multimed Tools Appl (2022). https://doi.org/10.1007/s11042-021-11623-3

10) Subramanian, B., Olimov, B., Naik, S.M. et al. An integrated mediapipe-optimized GRU model for Indian sign  language recognition. Sci Rep 12, 11964 (2022). https://doi.org/10.1038/s41598-022-159987 9

11) Garg, S., Saxena, A. & Gupta, R. Yoga pose classification: a CNN and MediaPipe inspired deep learning  approach for real-world application. J Ambient Intell Human Comput (2022). https://doi.org/10.1007/s12652-022- 03910-0

12) G. Amprimo, C. Ferraris, G. Masi, G. Pettiti and L. Priano, “GMH-D: Combining Google MediaPipe and RGB Depth Cameras for Hand Motor Skills Remote Assessment,” 2022 IEEE International Conference on Digital Health  (ICDH), 2022, pp. 132-141, doi: 10.1109/ICDH55609.2022.00029.

13) Nitin Kumar, R., Vaishnavi, M., Gayatri, K.R., Prashanthi, V., Supriya, M. (2022). Air Writing Recognition  Using Mediapipe and Opencv. In: Karuppusamy, P., García Márquez, F.P., Nguyen, T.N. (eds) Ubiquitous  Intelligent Systems. ICUIS 2021. Smart Innovation, Systems and Technologies, vol 302. Springer, Singapore.  https://doi.org/10.1007/978-981-19-2541-2_35

14) Arpita Haldera , Akshit Tayade, “Real-time Vernacular Sign Language Recognition using MediaPipe and  Machine Learning” International Journal of Research Publication and Reviews Vol (2) Issue (5) (2021) Page 9-17.

15) Zhaolong Deng, Yanliang Qiu, Xintao Xie, Zuanhui Lin, “A 3D hand pose estimation architecture based on  depth camera,” Proc. SPIE 12593, Second Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence  and Big Data Forum (AIBDF 2022), 125930Z(16 March 2023); https://doi.org/10.1117/12.2671350.

16) S., Harish. (2023). Computer vision-based Hand gesture recognition system. 10.14704/nq.2022.20.7.NQ33365.

17) K. Roy and M. A. H. Akif, “Real Time Hand Gesture Based User Friendly Human Computer Interaction  System,” 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET),  Chittagong, Bangladesh, 2022, pp. 260-265, doi: 10.1109/ICISET54810.2022.9775918.

18) Vasavi, R., Rahul, N., Snigdha, A., Moses, K. J., & Simha, S. V. Painting with Hand Gestures using MediaPipe.

19) Zitong Zhou and Yanhui Lv “The application of gesture recognition based on MediaPipe in virtual scene”, Proc.  SPIE 12636, Third International Conference on Machine Learning and Computer Application (ICMLCA 2022),  126361O (25 May 2023); https://doi.org/10.1117/12.2675148

20) Farooq, U., Rahim, M. S. M., Sabir, N., Hussain, A., & Abid, A. (2021). Advances in machine translation for  sign language: approaches, limitations, and challenges. Neural Computing and Applications, 33(21), 14357-14399.

21) Schlüsener, N., & Bücker, M. (2022). Fast Learning of Dynamic Hand Gesture Recognition with FewShot  Learning Models. arXiv preprint arXiv:2212.08363.

22) Gupta, M., Kumar, R., & Dewari, S. (2021). Digital twin techniques in recognition of human action using the  fusion of convolutional neural network. In Digital Twin Technology (pp. 165-186). CRC Press.

23) Khajuria, O., Kumar, R., & Gupta, M. (2023, April). Facial Emotion Recognition using CNN and VGG16. In  2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 472- 477). IEEE.