Volume no :
9 |Issue no :
02Article Type :
Scholarly ArticleAuthor :
Mr. Ganesh Badar, Mr. Nilesh Lokhande, Mr. Harshal Kute, Dr. P. S. GawandePublished Date :
June, 2025Publisher :
Journal of Artificial Intelligence and Cyber Security (JAICS)1) Al Farid, F.; Hashim, N.; Abdullah, J.; Bhuiyan, M.R.; Shahida Mohd Isa, W.N.; Uddin, J.; Haque, M.A.; Husen, M.N. A Structured and Methodological Review on Vision-Based Hand Gesture Recognition System. J. Imaging 2022, 8, 153. https://doi.org/10.3390/jimaging8060153
Sahoo, J.P.; Prakash, A.J.; Pławiak, P.; Samantray, S. Real-Time Hand Gesture Recognition Using FineTuned Convolutional Neural Network. Sensors 2022, 22, 706. https://doi.org/10.3390/s22030706
2) Gadekallu, T. R., Srivastava, G., Liyanage, M., M., I., Chowdhary, C. L., Koppu, S., et al. (2022). Hand Gesture Recognition Based on a Harris Hawks Optimized Convolution Neural Network. Comput. Electr. Eng. 100, 107836. doi:10.1016/j.compeleceng.2022.107836
3) Lim, M., Kotsani, N., & Hartono, P. (2022). Handmate: An Accessible Browser-based Controller for Web Audio and Midi using AI Hand-Tracking. International Conference on New Interfaces for Musical Expression. https://doi.org/10.21428/92fbeb44.40c13869
4) Khawaritzmi Abdallah AHMAD, Dian Christy SILPANI, Kaori YOSHIDA Hand Gesture Recognition by Hand Landmark Classification Released on J-STAGE: May 31, 2022 https://doi.org/10.5057/isase.2022- C000026
5) Lu Liu, Wenlong Xu, Yao Ni, Zhipeng Xu, Binbin Cui, Jiaqi Liu, Huanhuan Wei, and Wentao Xu ACS Nano 2022 Stretchable Neuromorphic Transistor That Combines Multisensing and Information Processing for Epidermal Gesture Recognition 16 (2), 2282-2291 DOI: 10.1021/acsnano.1c08482
6) S. Cai, Z. Lu, L. Guo, Z. Qing and L. Yao, “The LET Procedure for Gesture Recognition With Multiple Forearm Angles,” in IEEE Sensors Journal, vol. 22, no. 13, pp. 13226-13233, 1 July1, 2022, doi: 10.1109/JSEN.2022.3177475.
7) Wang, H., Zhang, Y., Liu, C. et al. sEMG based hand gesture recognition with deformable convolutional network. Int. J. Mach. Learn. & Cyber. 13, 1729–1738 (2022). https://doi.org/10.1007/s13042-021- 01482-7
8) Bhushan, S.; Alshehri, M.; Keshta, I.; Chakraverti, A.K.; Rajpurohit, J.; Abugabah, A. An Experimental Analysis of Various Machine Learning Algorithms for Hand Gesture Recognition. Electronics 2022, 11, 968. https://doi.org/10.3390/electronics11060968
9) Bhaumik, G., Verma, M., Govil, M.C. et al. HyFiNet: Hybrid feature attention network for hand gesture recognition. Multimed Tools Appl (2022). https://doi.org/10.1007/s11042-021-11623-3
10) Subramanian, B., Olimov, B., Naik, S.M. et al. An integrated mediapipe-optimized GRU model for Indian sign language recognition. Sci Rep 12, 11964 (2022). https://doi.org/10.1038/s41598-022-159987 9
11) Garg, S., Saxena, A. & Gupta, R. Yoga pose classification: a CNN and MediaPipe inspired deep learning approach for real-world application. J Ambient Intell Human Comput (2022). https://doi.org/10.1007/s12652-022- 03910-0
12) G. Amprimo, C. Ferraris, G. Masi, G. Pettiti and L. Priano, “GMH-D: Combining Google MediaPipe and RGB Depth Cameras for Hand Motor Skills Remote Assessment,” 2022 IEEE International Conference on Digital Health (ICDH), 2022, pp. 132-141, doi: 10.1109/ICDH55609.2022.00029.
13) Nitin Kumar, R., Vaishnavi, M., Gayatri, K.R., Prashanthi, V., Supriya, M. (2022). Air Writing Recognition Using Mediapipe and Opencv. In: Karuppusamy, P., García Márquez, F.P., Nguyen, T.N. (eds) Ubiquitous Intelligent Systems. ICUIS 2021. Smart Innovation, Systems and Technologies, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-19-2541-2_35
14) Arpita Haldera , Akshit Tayade, “Real-time Vernacular Sign Language Recognition using MediaPipe and Machine Learning” International Journal of Research Publication and Reviews Vol (2) Issue (5) (2021) Page 9-17.
15) Zhaolong Deng, Yanliang Qiu, Xintao Xie, Zuanhui Lin, “A 3D hand pose estimation architecture based on depth camera,” Proc. SPIE 12593, Second Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence and Big Data Forum (AIBDF 2022), 125930Z(16 March 2023); https://doi.org/10.1117/12.2671350.
16) S., Harish. (2023). Computer vision-based Hand gesture recognition system. 10.14704/nq.2022.20.7.NQ33365.
17) K. Roy and M. A. H. Akif, “Real Time Hand Gesture Based User Friendly Human Computer Interaction System,” 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, 2022, pp. 260-265, doi: 10.1109/ICISET54810.2022.9775918.
18) Vasavi, R., Rahul, N., Snigdha, A., Moses, K. J., & Simha, S. V. Painting with Hand Gestures using MediaPipe.
19) Zitong Zhou and Yanhui Lv “The application of gesture recognition based on MediaPipe in virtual scene”, Proc. SPIE 12636, Third International Conference on Machine Learning and Computer Application (ICMLCA 2022), 126361O (25 May 2023); https://doi.org/10.1117/12.2675148
20) Farooq, U., Rahim, M. S. M., Sabir, N., Hussain, A., & Abid, A. (2021). Advances in machine translation for sign language: approaches, limitations, and challenges. Neural Computing and Applications, 33(21), 14357-14399.
21) Schlüsener, N., & Bücker, M. (2022). Fast Learning of Dynamic Hand Gesture Recognition with FewShot Learning Models. arXiv preprint arXiv:2212.08363.
22) Gupta, M., Kumar, R., & Dewari, S. (2021). Digital twin techniques in recognition of human action using the fusion of convolutional neural network. In Digital Twin Technology (pp. 165-186). CRC Press.
23) Khajuria, O., Kumar, R., & Gupta, M. (2023, April). Facial Emotion Recognition using CNN and VGG16. In 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 472- 477). IEEE.